窄线宽 1064 nm 分布布拉格反射半导体激光器

贾宝山1,3, 王皓1, 李爱民1, 王梦鹤1, 都继瑶1, 李辉1, 李再金1,2, 薄报学1, 曲轶1,2

1长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022;

²海南师范大学物理与电子工程学院,海南海口 571158;

3长春理工大学质量监控与评估中心, 吉林长春 130022

摘要 1064 nm 分布布拉格反射(DBR)半导体激光器具有窄线宽、输出稳定的特性,在自由空间激光通信用种子 光源等方面具有广阔的应用前景。设计了一种单模、窄线宽的 1064 nm DBR 半导体激光器,利用金属有机化合物 气相沉积技术生长出 InGaAs 应变量子阱半导体激光器材料,并制备出腔长为 1200 μm 的脊型波导 1064 nm DBR 半导体激光器。当注入电流为 70 mA 时,室温下该激光器的连续输出功率可达到 7 mW,3 dB 光谱线宽为 0.12 nm。

关键词 激光器; 1064 nm 半导体激光器; 分布布拉格反射激光器; 单模激光器; 脊型波导; 窄线宽
 中图分类号 TN248.4
 文献标识码 A
 doi: 10.3788/CJL201845.0501006

Narrow Linewidth 1064 nm Distributed Bragg Reflector Semiconductor Laser

Jia Baoshan^{1,3}, Wang Hao¹, Li Aimin¹, Wang Menghe¹,

Du Jiyao¹, Li Hui¹, Li Zaijin^{1,2}, Bo Baoxue¹, Qu Yi^{1,2}

¹National Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, Jilin 130022, China;

²School of Physics and Electronic Engineering, Hainan Normal University, Haikou, Hainan 571158, China; ³Quality Control and Evaluation Center, Changchun University of Science and Technology, Changchun, Jilin 130022, China

Abstract The 1064 nm distributed Bragg reflector (DBR) semiconductor laser has the characteristics of narrow linewidth and stable output, and it has a broad application prospect in the field of free space laser communication used as seed light source. A single mode and narrow linewidth 1064 nm DBR semiconductor laser is designed. Metalorganic chemical vapor deposition (MOCVD) technique is used to grow InGaAs strained quantum well laser material, and a ridge waveguide 1064 nm DBR semiconductor laser with the cavity length of 1200 μ m is fabricated. When injection current is 70 mA, the continuous output power of the laser can reach 7 mW, and 3 dB spectral linewidth of the laser is 0.12 nm at room temperature.

Key words lasers; 1064 nm semiconductor lasers; distributed Bragg reflector lasers; single mode lasers; ridge waveguide; narrow linewidth

OCIS codes 140.5960; 050.2770

1 引 言

窄线宽、单频(单纵模)激光光源在光通信、传 感、光谱学等领域有着广泛应用^[1-6]。为了实现窄线 宽和波长稳定输出,一个重要的解决方案是采用布 拉格光栅充当腔内内置选频元件,以提高激光输出 的波长稳定性^[7]。内置光栅选频元件可分为两类: 一是分布布拉格反射器(DBR),光栅在半导体激光

收稿日期: 2017-09-26; 收到修改稿日期: 2017-12-10

基金项目: 国家自然科学基金联合基金(U1330136)、2015 年吉林省择优资助博士后科研项目

作者简介: 贾宝山(1978-),男,博士后,助理研究员,主要从事半导体激光技术及应用方面的研究。

E-mail: bsjia@163.com

导师简介:曲轶(1969—),男,博士,教授,博士生导师,主要从事半导体激光器物理与技术方面的研究。 E-mail: 2686566673@qq.com 器侧面作为反射器的元件;二是分布反馈(DFB)布 拉格反射器,光栅沿整个半导体激光器的谐振腔延 伸。DBR激光器由于具有单次外延生长、光栅在有 源层外、内部损耗小、输出稳定、成本低、使用寿命长 等优势,近年来受到了研究人员的重视^[8-13]。

目前,美国、德国等发达国家在窄线宽半导体激 光器的研究方面占据领先地位。我国从事窄线宽半 导体激光器研究的单位主要有长春理工大学和中国 科学院半导体研究所等单位,且研究水平与国外相 比具有较大差距。我国现在所用的窄线宽半导体激 光器几乎完全依赖进口,这极大地制约了我国在光 纤激光器及空间光通信等领域的研究进程。

1064 nm 波段的高功率、单模、窄线宽 DBR 结 构半导体激光器具有体积小、效率高等优点,在特定 领域可替代 1064 nm 固体激光器用作光谱分析、气 体传感、太赫兹发射及光纤激光器种子源,并可应用 于空间光通信等领域。国外研制和生产 1064 nm DBR 半导体激光器的单位主要集中在美国和德国等 发达国家。2006年, Martin 等^[14]研制出了1060 nm含 2 阶光栅选频结构的单模 DBR 半导体激光器,当注入 电流为 700 mA 时,其输出功率为 467 mW,阈值电流 为31 mA。2008年, Hasler 等^[15]制备出 1060 nm 锥 形 DBR 半导体激光器,该激光器采用 6 阶布拉格光 栅结构,当输出功率为5W时,其光谱线宽低于 40 pm。2011年,文献「16]报道了窄线宽1064 nm DBR 半导体激光器,该激光器包含 InGaAs 量子阱 和 6 阶布拉格光栅等结构,波导(WG)结构和光栅 区总长为4 mm,该激光器的线宽几乎不受输出功率 的影响,当输出功率为180 mW时,其最低本征线宽 可达到2 kHz,波长偏移率仅为 0.083 nm/K。2014 年,文献[17]报道了一种具有 80 阶 V 型光栅结构 的 DBR 半导体激光器,该单模半导体激光器在连续 输出功率达到 6 W 时的光谱线宽仅为 0.4 nm。目 前,国内关于1064 nm波段单模 DBR 半导体激光器 的研究鲜有报道。

本文通过对光栅结构和脊型波导进行分析,设 计了一种1064 nm DBR半导体激光器,该激光器在 70 mA注入电流下的连续输出功率可达到 7 mW, 中心波长为1064.63 nm,3 dB光谱线宽为0.12 nm。

2 器件的设计与制备

2.1 器件的结构

高功率窄线宽 1064 nm DBR 半导体激光器的 结构如图 1 所示。器件外延片是通过金属有机化合 物气相沉积(MOCVD)技术生长在 n 型掺杂 GaAs 衬底上的,波导层为 AlGaAs 结构,激光器活化区为 InGaAs 量子阱(QW)结构。脊型波导宽度为 3.5 μm。光栅有效反射率约 95%,后腔面(光栅侧) 不镀膜,前腔面镀减反射膜。两侧的 p 型、n 型光限 制层和包层都采用 AlGaAs 材料,形成光波导结构。

图 1 1064 nm DBR 半导体激光器的结构

2.2 器件设计

普通的宽条法布里-珀罗(F-P)腔半导体激光器输出激光的相干性较差,相干长度可达几毫米。 DBR光栅使特定波长的激光反馈进入光腔,使该波 长的光得到进一步放大增强,抑制其他波长光的反馈,实现稳频工作。

为了制备单模、窄线宽 DBR 光栅结构半导体激 光器,应对半导体激光器光栅的结构进行优化设计。 DBR 对激光器的影响主要取决于 DBR 的反射率, 而 DBR 的反射率与 DBR 的光栅阶数、长度和占空 比有关。在光栅阶数设计方面,高阶数光栅的加工 难度较大;若阶数过小,光栅的反射率较低,不能提 供足够的光反馈。结合实验条件,本研究采用 6 阶 均匀光栅结构。在光栅区长度设计方面,光栅区的 长度要适宜,光栅区过长会增加散射损耗和无源光 栅区的吸收损耗,光栅区过短则不能提供足够的反 射,使输出功率下降。本研究选取光栅占空比为 0.5,利用 R-Soft 光学设计软件进行仿真,分别模拟 不同长度 DBR 激光器的光谱特性与阈值电流特性。 表 1 为 1064 nm DBR 半导体激光器光栅反射率模 拟中采用的参数。

图 2 为波长为 1064 nm 时获得的不同光栅区 长度的 DBR 的最大反射率变化曲线。由图 2 可知: 随着 DBR 光栅区长度增加,反射率随之增强;当 DBR 光栅区长度超过 100 µm 后,光栅反射率超过 了 90%;当 DBR 光栅区长度达到 300 µm 后,反射 率可达到 100%。

	表 1	DBR	光栅反	射率模拟	中采用	的参数
--	-----	-----	-----	------	-----	-----

Table 1 Parameters in DBR grating reflectivity simulation

Parameter	Value /µm
Background index	3.21
Index difference	0.1
Waveguide width	3.5
Waveguide height	2.5
Slab height	1.25

利用 R-Soft 光学设计软件进行仿真,模拟中心波 长为 1064 nm 时不同光栅区长度的 DBR 激光器的输 出光谱。由图 3 可见,当 DBR 光栅区长度为400 μm 时,DBR 激光器具有良好的单纵模输出特性。因此, 本研究选取 DBR 光栅区的长度为 400 μm。

脊型波导区的长度对光束质量也有重要影响。 脊型波导区的长度太短,模式过滤不充分,无法抑制 反射回的光,容易形成多模工作;随着脊型区长度增 加,模式过滤更加充分,增益饱和增加,光束更加稳 定。但随着脊型区长度进一步增加,激光由于被过 度激励而激发出高阶模,且光功率密度较高,容易发 生自聚焦和光束扭曲,使激光器的光束质量劣化。 结合 400 μm 长 DBR 光栅,模拟不同脊型波导区长度 的激光器的输出光谱,发现脊型波导区长为 800 μm、 总腔长为 1200 μm 时,1064 nm 对应激光频率附近具 有良好的单纵模输出特性,如图 4 所示。

图 4 1064 nm 对应激光频率附近的输出光谱与增益模拟曲线 Fig. 4 Simulation curves of output spectrum and gain near the laser frequency corresponding to 1064 nm

图 5 给出了 DBR 光栅区长度为 400 µm、脊型 波导区长度为 800 µm 的 1064 nm 激光器的输出功 率与注入电流的模拟曲线,可以看出,当阈值电流为 28 mA 时,激光器在 70 mA 注入电流下的连续输出 功率可达 13 mW。

图 5 1064 nm DBR 半导体激光器输出功率与 注入电流的模拟曲线

Fig. 5 Simulation curve between output power and injection current of 1064 nm DBR semiconductor laser

通过前期的优化设计确定 1064 nm DBR 光栅 半导体激光器的总腔长为 1200 μm, DBR 光栅区长 度为 400 μm, 脊型波导区长度为 800 μm, 采用 6 阶 光栅结构。

布拉格波长与光栅周期结构的关系符合布拉格 条件^[18]:

$$m\lambda_{\rm B} = 2n_{\rm eff}\Lambda$$
, (1)

式中: Λ 为光栅周期;m 为布拉格衍射阶数; λ_B 为布 拉格波长; n_{eff} 为有效折射率。1064 nm 激光器材料 的有效折射率可由 Comsol 偏微分方程法^[19]求得, 为 3.39。由(1)式可得光栅周期为 941.59 nm。

2.3 材料生长与器件制备

2.3.1 材料生长

激光器外延片采用 AIXTRON 200/4 MOCVD 系

统进行外延生长制备得到,基底为 n-GaAs,反应气体为
Ga(CH₃)₃、Al(CH₃)₃和 AsH₃,化学反应方程式为 *x*(AlCH₃)₃+(1-x)Ga(CH₃)₃+AsH₃ =
Al_xGa_{1-x}As+3CH₄。
(2)
制备的 1064 nm DBR 半导体激光器的外延结

构参数见表 2。

表 2 1064 nm DBR 半导体激光器的外延结构参数

Table 2Epitaxial layer parameters of 1064 nmDBR semiconductor laser

No	Thiskness /um	Lovor	Doping
INO.	1 mckness / μm	Layer	concentration / cm ⁻³
9	0.1	p-GaAs	10^{19}
8	1.5	p-Al _{0.4} Ga _{0.6} As	s 10 ¹⁸
7	0.1	${\rm Al}_{_{0.15}}{\rm Ga}_{_{0.85}}{\rm As}$	None
6	0.01	GaAs	None
5	0.0075	In _{0.29} Ga _{0.71} As	None
4	0.01	GaAs	None
3	0.1	${\rm Al}_{0.15}{\rm Ga}_{0.85}{\rm As}$	None
2	1.7	n-Al _{0.4} Ga _{0.6} As	s 10 ¹⁸
1	0.5	n-GaAs	2×10^{18}
0	100	n-GaAs	2×10^{18}

2.3.2 器件的制备

DBR 半导体激光器的制备工艺是在普通宽条 F-P 腔半导体激光器的光波导上引入光栅结构。首 先,在外延片表面采用干法刻蚀出宽为 3.5 μm、长 为 1200 μm 的脊型波导结构,如图 6 所示;然后采用 全息曝光和感应耦合等离子体干法刻蚀技术在脊型 波导上制备出深度为 1.16 μm 的 6 阶光栅结构,实测 光栅周期约为 930 nm,如图 7 所示;最后,使用 SiO₂ 钝化技术对光栅区域进行钝化,将经过金属蒸镀的外 延片进行减薄处理和解理镀膜,封装后进行测试。

3 性能测试

图 8 是使用 Anritsu MS9710C 光谱分析仪测

图 7 刻蚀后的布拉格光栅的扫描电镜图 Fig. 7 SEM image of Bragg grating after etching 试的器件发射光谱,注入电流为 70 mA,中心波长 λ。为 1064.63 nm,3 dB 光谱带宽 Δλ 为 0.12 nm。

使用 ILX Lightwave LDX-32420 型大功率精 密半导体激光器驱动器和 OP55N-300F-H9 型功率 计获得了 1064 nm DBR 半导体激光器的光强-电 流-电压(LIV)测试曲线,如图 9 所示。在室温25 ℃ 下,激光器的阈值电流为 42 mA,在 70 mA 注入电 流下的连续输出功率可达 7 mW,电光转换效率达 到最大值 4.14%。由于担心器件被损坏,没有进一 步加大注入电流。受材料及制作工艺的影响,实测

图 9 1064 nm DBR 半导体激光器的 LIV 测试曲线 Fig. 9 LIV test curves of 1064 nm DBR semiconductor laser 功率比理论计算功率低。

4 结 论

通过理论设计制备了总腔长为 1200 μ m、光栅 区长度为 400 μ m 的 1064 nm DBR 半导体激光器, 该激光器的脊型波导宽为 3.5 μ m,6 阶布拉格光栅 周期为 930 nm,光栅刻蚀深度约为 1.16 μ m。该激 光器的阈值电流为 42 mA,在 70 mA 注入电流下, 其连续输出功率可达到 7 mW,中心波长为 1064.63 nm,3 dB光谱线宽仅为 0.12 nm。

参考文献

- [1] Xu Y Z, Wang Z N, Zhang X, et al. 10 GHz-spaced over 1100 channel flat supercontinuum source generated in a microstructure fiber [J]. Chinese Journal of Lasers, 2007, 34(5): 675-679.
 徐永钊,王子南,张霞,等.基于微结构光纤的 10 GHz超过 1100 信道的平坦超连续谱光源[J].中国激光, 2007, 34(5): 675-679.
- [2] Wang Z F, Li T, Yang G W, et al. Development of 808 nm quasi-continuous wave laser diode bar with 600 W output power[J]. Chinese Journal of Lasers, 2017, 44(6): 0601004.
 王贞福,李特,杨国文,等. 808 nm 准连续 600 W

高功率半导体激光芯片研制[J].中国激光,2017,44(6):0601004.

[3] Liu M H, Cui B F, He X, et al. Study of high power semiconductor laser with low threshold current
[J]. Chinese Journal of Lasers, 2016, 43 (5): 0502001.
刘梦涵,崔碧峰,何新,等.大功率低阈值半导体激

刘梦涵, 崔岩峰, 何新, 寺. 入切举低幽恒丰寻体激 光器研究[J]. 中国激光, 2016, 43(5): 0502001.

- [4] Pan B W, Yu L Q, Lu D, et al. 20 kHz narrow linewidth fiber Bragg grating external cavity semiconductor laser [J]. Chinese Journal of Lasers, 2015, 42(5): 0502007.
 潘碧玮,余力强,陆丹,等. 20 kHz 窄线宽光纤光栅 外腔半导体激光器[J].中国激光, 2015, 42(5): 0502007.
- [5] Liu D D, Wang Y, Ye Z, et al. Grating fabrication of 808 nm distributed feedback semiconductor laser by holographic photo lithography[J]. Chinese Journal of Lasers, 2015, 42(2): 0202008.

刘丹丹, 王勇, 叶镇, 等. 全息光刻制备 808 nm 分 布反馈半导体激光器的光栅[J]. 中国激光, 2015, 42(2): 0202008.

[6] Li Z Y, Tan R Q, Huang W, et al. Laser diode with long external cavity of volume Bragg grating [J]. Chinese Journal of Lasers, 2012, 39(11): 1102006.
李志永, 谭荣清, 黄伟,等. 长腔长体布拉格光栅外 腔半导体激光器 [J]. 中国激光, 2012, 39(11): 1102006.

- McIntosh K A, Brown E R, Nichols K B, et al.
 High-power high-modulation-speed 1060-nm DBR lasers for green-light emission [J]. IEEE Photonics Technology Letters, 2006, 18(4): 616-618.
- [8] Paschke K, Spiebberger S, Kaspari C, et al. Highpower distributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth [J]. Optics Letters, 2010, 35(3): 402-404.
- [9] Feise D, Blume G, Pohl J, et al. Sub-MHz linewidth of 633 nm diode lasers with internal surface DBR gratings[C]. SPIE, 2003, 8640: 86400A.
- [10] Park J H, Jedrzejczyk D, Feise D. Compact blue light source by single-pass second harmonic generation of DBR tapered laser radiation [J]. IEEE Photonics Technology Letters, 2014, 26(19): 1936-1939.
- [11] Jedrzejczyk D, Asbahr P, Pulka M. Coupling of DBR tapered diode laser radiation into a single-mode-fiber at high powers[C]. SPIE, 2014, 8965: 89651A.
- Ryasnyanskiy A, Vorobiev N, Smirnov V, et al.
 DBR and DFB lasers in neodymium- and ytterbiumdoped photothermorefractive glasses [J]. Optics Letters, 2014, 39(7): 2156-2159.
- [13] Achtenhagen M, Amarasinghe N V, Evans G A. High-power distributed Bragg reflector lasers operating at 1065 nm[J]. Electronics Letters, 2007, 43(14): 755-757.
- [14] Martin H H, Hong K N, Kechang S, et al. Highpower distributed Bragg reflector lasers for greenlight generation[C]. SPIE, 2006, 6116: 61160M.
- [15] Hasler K H, Sumpf B, Adamiec P, et al. 5-W DBR tapered lasers emitting at 1060 nm with a narrow spectral linewidth and a nearly diffraction-limited beam quality [J]. IEEE Photonics Technology Letters, 2008, 20(19): 1648-1650.
- [16] Spießberger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz[J]. Applied Physics B, 2011, 104(4): 813-818.
- [17] Decker J, Crump P, Fricke J, et al. Narrow stripe broad area lasers with high order distributed feedback surface gratings [J]. Photonics Technology Letters, 2014, 26(8): 829-832.
- [18] Zhang Y M. Applied optics [M]. Beijing: China Machine Press, 2006.
 张以谟.应用光学 [M].北京:机械工业出版社, 2006.
- [19] Su S T, Tang S F, Chen T C, et al. Temperaturedependent VCSEL optical characteristics based on graded Al_xGa_{1-x}As/GaAs distributed Bragg reflectors: reflectivity and beam profile analyses[C]. SPIE, 2006, 6132: 61320L.